Free CursorsMyspace LayoutsMyspace Comments
} img{padding:0px;background:transparent;border:none;}

Sabtu, 05 November 2011

Hibridasi



Hibridasi adalah sebuah konsep bersatunya orbital-orbital atom membentuk orbital hibrid yang baru yang sesuai dengan penjelasan kualitatif sifat ikatan atom. Konsep orbital-orbital yang terhibridisasi sangatlah berguna dalam menjelaskan bentuk orbital molekul dari sebuah molekul. Teori hibridisasi dipromosikan oleh kimiawan Linus Pauling dalam menjelaskan struktur molekul seperti metana (CH4). Sangatlah penting untuk dicatat bahwa orbital adalah sebuah model representasi dari tingkah laku elektron-elektron dalam molekul. Dalam kasus hibridisasi yang sederhana, pendekatan ini didasarkan pada orbital-orbital atom hidrogen. Orbital-orbital yang terhibridisasikan diasumsikan sebagai gabungan dari orbital-orbital atom yang bertumpang tindih satu sama lainnya dengan proporsi yang bervariasi.
1.      Hibrid sp3
Hibridisasi menjelaskan atom-atom yang berikatan dari sudut pandang sebuah atom. Untuk sebuah karbon yang berkoordinasi secara tetrahedal (seperti metana, CH4), maka karbon haruslah memiliki orbital-orbital yang memiliki simetri yang tepat dengan 4 atom hidrogen. Konfigurasi keadaan dasar karbon adalah 1s2 2s2 2px1 2py1. Teori ikatan valensi memprediksikan, berdasarkan pada keberadaan dua orbital p yang terisi setengah, bahwa C akan membentuk dua ikatan kovalen, yaitu CH2. Namun, metilena adalah molekul yang sangat reaktif, sehingga teori ikatan valensi saja tidak cukup untuk menjelaskan keberadaan CH4.
Lebih lanjut lagi, orbital-orbital keadaan dasar tidak bisa digunakan untuk berikatan dalam CH4. Walaupun eksitasi elektron 2s ke orbital 2p secara teori mengijinkan empat ikatan dan sesuai dengan teori ikatan valensi (adalah benar untuk O2), hal ini berarti akan ada beberapa ikatan CH4 yang memiliki energi ikat yang berbeda oleh karena perbedaan aras tumpang tindih orbital. Gagasan ini telah dibuktikan salah secara eksperimen, setiap hidrogen pada CH4 dapat dilepaskan dari karbon dengan energi yang sama. Untuk menjelaskan keberadaan molekul CH4 ini, maka teori hibridisasi digunakan. Langkah awal hibridisasi adalah eksitasi dari satu (atau lebih) elektron. Proton yang membentuk inti atom hidrogen akan menarik salah satu elektron valensi karbon. Hal ini menyebabkan eksitasi, memindahkan elektron 2s ke orbital 2p. Hal ini meningkatkan pengaruh inti atom terhadap elektron-elektron valensi dengan meningkatkan potensial inti efektif. Kombinasi gaya-gaya ini membentuk fungsi-fungsi matematika yang baru yang dikenal sebagai orbital hibrid.
Dalam kasus atom karbon yang berikatan dengan empat hidrogen, orbital 2s (orbital inti hampir tidak pernah terlibat dalam ikatan) "bergabung" dengan tiga orbital 2p membentuk hibrid sp3. Pada CH4, empat orbital hibrid sp3 bertumpang tindih dengan orbital 1s hidrogen, menghasilkan empat ikatan sigma.
Menurut teori hibridasi orbital, elektron-elektron valensi metana seharusnya memiliki tingkat energi yang sama, namun spektrum fotoelekronnya menunjukkan bahwa terdapat dua pita, satu pada 12,7 eV (satu pasangan elektron) dan saty pada 23 eV (tiga pasangan elektron). Ketidakkonsistenan ini dapat dijelaskan apabila kita menganggap adanya penggabungan orbital tambahan yang terjadi ketika orbital-orbital sp3 bergabung dengan 4 orbital hidrogen.
2.      Hibrid sp2
Misalnya etilena (C2H4) yang memiliki ikatan rangkap dua di antara karbon-karbonnya. Karbon akan melakukan hibridisasi sp2 karena orbtial-orbital hibrid hanya akan membentuk ikatan sigma dan satu ikatan pi seperti yang disyaratkan untuk ikatan rangkap dua di antara karbon-karbon. Ikatan hidrogen-karbon memiliki panjang dan kuat ikat yang sama. Dalam hibridisasi sp2, orbital 2s hanya bergabung dengan dua orbital 2p membentuk 3 orbital sp2 dengan satu orbital p tersisa. Dalam etilena, dua atom karbon membentuk sebuah ikatan sigma dengan bertumpang tindih dengan dua orbital sp2 karbon lainnya dan setiap karbon membentuk dua ikatan kovalen dengan hidrogen dengan tumpang tindih s-sp2 yang bersudut 120°. Ikatan pi antara atom karbon tegak lurus dengan bidang molekul dan dibentuk oleh tumpang tindih 2p-2p (namun, ikatan pi boleh terjadi maupun tidak).
3.      Hibrid sp
Ikatan kimia dalam senyawa seperti alkuna dengan ikatan rangkap tiga dijelaskan dengan hibridisasi sp. Dalam model ini, orbital 2s hanya bergabung dengan satu orbital-p, menghasilkan dua orbital sp dan menyisakan dua orbital p. Ikatan kimia dalam asetilena (etuna) terdiri dari tumpang tindih sp-sp antara dua atom karbon membentuk ikatan sigma, dan dua ikatan pi tambahan yang dibentuk oleh tumpang tindih p-p. Setiap karbon juga berikatan dengan hidrogen dengan tumpang tindih s-sp bersudut 180°.
4.      Hibridisasi dan bentuk molekul
Hibridisasi, bersama dengan (teori VSEPR), membantuk kita dalam menjelaskan bentuk molekul:
AX1 (contoh : LiH) : tidak ada hibridisasi; berbentuk linear
AX2 (contoh : BeCl2) : hibridisasi sp; berbentuk Linear atau diagonal
AX2E (contoh : GeF2): berbentuk V,
AX3 (contoh: BCl3) : hibridisasi sp2; berbentuk datar trigonal; sudut ikat cos1(1/2) = 120°
AX3E (contoh: NH3): piramida trigonal, 107°
AX4 (contoh : CCl4) : hibridisasi sp3; berbentuk tetrahedral; sudut ikat cos1(1/3) 109.5°
AX5 (contoh : PCl5) : hibridisasi sp3d; berbentuk Bipiramida trigonal
AX6 (contoh : SF6) : hibridisasi sp3d2; berbentuk oktahedral (atau bipiramida persegi)
Hal ini berlaku apabila tidak terdapat pasangan elektron menyendiri (lone pair electron) pada atom pusat. Jika terdapat pasangan elektron menyendiri, maka elektron tersebut harus dihitung pada bagian Xi, namun sudut ikat akan menjadi lebih kecil karena gaya tolak menolak. Sebagai contoh, air (H2O) memiliki atom oksigen yang berikatan dengan dua H dan dua pasangan elektron menyendiri, hal ini berarti terdapat 4 ‘elemen’ pada O. Sehingga termasuk dalam kategori AX4 dan terdapat hibridasi Sp3

0 komentar:

Posting Komentar

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Best Web Host